SSAO в играх что это

SSAO в играх что это

Как работает затенение в компьютерных играх

С появлением 3D-игр у их создателей серьезно прибавилось проблем: о сглаживании мы уже говорили, также мы говорили и о фильтрации текстур. Теперь же поговорим о еще одном эффекте, который позволяет серьезно улучшить реалистичность картинки — о Ambient Occlusion (AO), или о затенении.

В оптике можно выделить три простых градации освещенности — тень (источник света не виден), полутень (источник света виден частично) и освещенное место (источник света виден полностью). Казалось бы — все просто, рассчитать границы тени и полутени можно в два счета с помощью обыкновенных лучей. Однако полученная в результате картинка наводит на мысль, что мы где-то что-то забыли:

Таких черных теней не бывает (ну на Земле по крайней мере), так что сразу становится очевидным, что мы забыли — рассеяние света: суть в том, что в реальном времени фотоны могут отражаться от различных поверхностей и в итоге попадать туда, куда напрямую фотоны от источника не долетают: именно поэтому в тени хоть и темнее, чем на свету, но не черным черно. На Земле таким «рассеивателем» фотонов выступает сама атмосфера.

Но тут возникает вопрос — а как это рассчитать-то? Увы — алгоритма, дающего 100% точное рассеяние света в real-time, нет, однако есть множество хорошо приближенных к реальности алгоритмов, отлаженных настолько, что они спокойно используются в видеоиграх.

Для начала — общая для всех алгоритмов теория: можно ввести так называемую среднюю освещенность всей сцены, своеобразную аппроксимацию непрямого освещения. Но вот проблема в том, что в местах, где есть тень, такая аппроксимация будет давать повышенную яркость. Поэтому можно несколько усложнить ее — снижать яркость в тех местах, куда отраженному свету труднее добраться. То есть для каждого фрагмента сцены мы находим так называемый заграждающий фактор: количество свободных «путей» для фотона деленное на все количество путей фотона до данного участка, и на основе этих данных и средней яркости сцены можно рассчитать яркость конкретного участка.

Однако тут мы получаем очередную проблему — отрисовка геометрии происходит постепенно, поэтому заграждающий фактор также в процессе отрисовки может серьезно меняться. Можно, конечно, рассчитать AO на этапе загрузки сцены, но тогда затенение не коснется динамических объектов (персонажей, машин и т.д.) — а это нехорошо. И тут приходит идея использовать для отрисовки затенения экранное пространство (Screen Space), что в итоге выливается в простейший алгоритм AO — SSAO.

SSAO

Этот алгоритм появился еще в Crysis 10 лет назад. Его суть проста: после построения геометрии у нас остается Z-буфер, или буфер глубины, который включает в себя абсолютно всю информацию о геометрии сцены — а значит никаких проблем сделать AO нет.

Хотя, конечно, кого я обманываю — проблемы есть, и самая серьезная — недостаточная производительность современных видеокарт: для того, чтобы получить более-менее неплохую карту затенения, для каждого фрагмента сцены нужно обсчитывать порядка 200-250 направлений, что позволяет «закопать» любой GPU. Поэтому делается хитрее — используется 8-32 «луча», направленные на выбранный фрагмент сцены, которые каждый раз поворачиваются на случайное значение. В итоге получается терпимое качество картинки с не очень большими затратами на расчеты:

В дальнейшем алгоритм был доработан — стали использоваться карты нормалей, что снизило сложность вдвое и позволило в итоге вдвое увеличить число выборок. Ну и финальный штрих — стали использовать размытие, дабы сгладить шум от случайных выборок.

HBAO и HBAO+

Nvidia не была бы Nvidia, если бы не стала развивать затенение дальше, представив в 2008 году HBAO — Horizon Based Ambient Occlusion. От SSAO это затенение отличалось тем, что оно основано на физической модели, где аппроксимируется интеграл освещенности фрагмента сцены со значениями выборки буфера глубины. Итоговое качество оказывается выше SSAO при большом числе выборок, но мы опять же упираемся в производительность. Поэтому HBAO рендерится обычно в более низком разрешении, что приводит к мерцанию картинки.

Проблема мерцания была исправлена в HBAO+ простым методом, который сейчас активно использует Sony в 4К играх на PlayStation 4 Pro: для рассчета HBAO+ используется шахматный рендеринг, то есть для обработки затенения используется часть предыдущего кадра и половина нового: это требует меньше затрат GPU, но при этом позволяет рендерить затенение в исходном разрешении, что и убирает мерцание.

HDAO

AMD в стороне не остались, и стали использовать собственное затенение (которое, к слову, также работает и на Nvidia) — HDAO (High Definition AO). Увы — AMD не делится алгоритмом, однако известно, что в его основе лежит Gather4 — технология, которая собирает 4 текселя в один регистр. То есть, как и с HBAO, по сути происходит рендеринг в пониженном разрешении. В итоге, в среднем картинка с HBAO и HDAO сравнима по качеству, но опять же — все достаточно сильно зависит от игры: к примеру, в Far Cry 3 с HDAO трава выглядит красивее:

VXAO

С выходом DX12 Nvidia представила принципиально новое затенение — VXAO (Voxel Accelerated Ambient Occlusion). Его суть в том, что оно работает уже не с пикселями и текселями (то есть 2D-объектами), а с вокселями — аналогом пикселя в 3D. И теперь мы используем не Z-буфер, а воксельное построение сцены, поэтому алгоритм состоит из трех пунктов: вокселизация, постобработка вокселей и трассировка конуса. Вокселизация выполняется путем рендеринга треугольных сеток в трехмерную текстуру, и поэтому ее производительность сильно зависит от общего количества треугольников, размера этих треугольников и количества вызовов рисования, необходимых для их рендеринга. Постобработка объединяет проходы, такие как очистка, фильтрация и понижающие выборки вокселей, а ее производительность зависит от общего количества вокселей, созданных во время вокселизации. Типичное время после обработки составляет 0,5 — 1,5 мс. И, наконец, трассировка конуса выполняется в пространстве экрана, поэтому его производительность зависит от разрешения экрана и скорости затенения. Итоговое качество картинки оказывается в куда лучше, чем с HBAO+:


На этом все. Советы для игроков простые: если компьютер хорошо тянет игру без AO, то можно попробовать включить SSAO или HBAO — обычно это снижает fps не более чем на 10%. Если же и с ними производительность отличная — можно попробовать HBAO+ и HDAO. Ну и для самых топовых видеокарт современности можно порекомендовать набирающее обороты VXAO — оно крайне требовательно к ресурсам (в том числе и к видеопамяти), поэтому даже в FHD оно будет доступно лишь пользователям старших Nvidia GTX 900ой и 1000ой линейки, а также владельцам старших AMD RX, Fury и Vega.

Screen space ambient occlusion с учетом нормалей и расчет одного отражения света.

В этой статье я расскажу, как я с нуля делал SSAO (Screen Space Ambient Occlusion — расчёт фонового освещения в экранном пространстве) с учетом нормалей. Сразу следует отметить, что это наиболее простая и прямолинейная реализация «в лоб», не претендующая на оптимальность или новизну. Статья будет полезна в первую очередь тем, кто имеет желание разобраться, как это работает.

Как-то захотелось мне поупражняться с графикой, и я решил сделать SSAO с нуля, опираясь на мои опыты с трассировкой лучей и на полученные ранее знания о том, как в целом это должно работать. В общем, поставил задачу написать к своему движку демку, с использованием всяких разных технологий. Решено было также поизучать deferred shading и screen-space local reflections, но об этом как-нибудь в другой раз. В этой статье сконцентрируюсь на SSAO.

Для самых нетерпеливых, вот результат:

1. Немного теории

Что нам говорит Википедия, по поводу ambient occlusion:

Получается, что нам нужно рассчитать, сколько света доходит до конкретной точки из полусферы, ориентированной по нормали в этой точке. Я даже как смог нарисовал в фотошопе картинку:

Что мы тут видим:

Сверху расположена камера, которая смотрит на нашу сцену.

Разными цветами показаны точки на объекте, их нормали и полусферы, по которым мы будем собирать затенение.

Точка, обозначенная фиолеовым ничем не затенена.

Точка, обозначенная желтым — затенена совсем чуть-чуть.

Точка, обозначенная голубым — затенена практически наполовину.

А вот точка на заднем объекте, обозначенная оранжевым, по идее, с точки зрения камеры частично перекрыта передним объектом, но так как она находится относительно далеко от объекта, то по факту передний объект эту точку не затеняет. С этим нам придется бороться отдельно, чтобы избежать неприятных артефактов в виде темных силуэтов объектов.

Таким образом, нам нужно рассчитать затенение для каждой точки, учитывая расстояние до объекта, который её перекрывает. Это и будет наш ambient occlusion.

Я решил в отличие от «традиционного» SSAO (например того, который, если я правильно помню, использоваться в первом Crysis) рассчитывать это не в screen space, а во view space. Минус этого подхода в большей сложности вычислений (хотя тоже, надо смотреть, проверять и сравнивать), плюс — в более точном AO.

Читать еще:  Что делать если наушники стали тихо играть

2. Подготовка

Итак, для расчета ambient occlusion нам понадобятся две текстуры: глубины и нормалей.

Как я уже сказал, нормали будут во view space. Как сохранять и восстанавливать нормали — ваше дело, я, например, использую хитрую функцию, которая записывает нормаль в две компонеты. Подробнее об этом в последнем разделе «Ништяки». Пока, пускай у нас будут две функции в шейдере:

Выглядеть текстура с нормалями будет примерно вот так:

Текстура с глубиной у нас будет хранить «стандартную» глубину OpenGL.

Значения глубины, приведенные к интервалу [-1..1] и возведенные в 64-ю степень, у меня выглядят как-то так:

Но, так как мы будем использовать view space нам нужно будет восстанавливать положение точки во view space по глубине. О том, как это сделать смотрите в последнем разделе «Ништяки». Пока, пускай у нас будут четыре функции в шейдере:

Также, для того, чтобы придать разнообразия нашему расчету AO, нам понадобится текстура с шумом. Самая обычная текстура с шумом, я даже показывать её здесь не буду. В дополнение к этой текстуре нам специально для неё нужны будут текстурные координаты. Такие, чтобы текстура рисовалась на экране тексель в пиксель. По большому счету, это не обязательно, но очень желательно, чтобы выборки были «более случайными».

Итого, на входе во фрагментный шейдер у нас есть три текстуры и два набора текстурных координат.

Надо заметить, что в моем движке для того, чтобы поддерживались разные версии шейдеров, сделаны следующие штуки:
Входящая переменная во фрагментный шейдер — etFragmentIn. В старых шейдерах заменяется на varying, в новых на in.
Результат фрагментного шейдера записывается в переменную etFragmentOut (gl_FragColor в старых шейдерах и «out vec4 . » + glBindFragDataLocation в новых версиях).

Итого, кусочек шейдера у нас уже есть:

Теперь можно приступить непосредственно к расчету нашего затенения.

3. Расчет SSAO

Общая идея такова: в данной точке получить положение и нормаль, затем сгенерировать несколько случайных направлений на полусфере, заданой нормалью, и проверить затенения в них. Результат собрать и поделить на количество выборок. Таким образом мы хотим контролировать как минимум три параметрa:
1) количество выборок;
2) минимальное расстояние, на котором мы проверяем затенение (оно нужно нам, чтобы избавиться от некоторых неприятных артефактов);
3) максимальное расстояние, на котором мы проверяем затенение;

Вот пару картинок для сравнения параметров: количество выборок — чем больше, тем более плавное и красивое затенение у нас получается:

Максимальное расстояние — чем оно больше, тем «шире» и мягче у нас затенение:

Для тестовой сцены (Crytek Sponza) я использовал такие параметры:

К сожалению, мне пока не пришло в голову, как можно избавиться от этих параметров и вычислять их, исходя из того, что у нас есть на экране. Буду рад, если кто-то подскажет, куда двигаться в этом направлении.

Итак, у нас все есть для того, чтобы рассчитать затенение каждой точки на экране. Для начала нам нужно найти нормаль в этой точке и её положение (не забывайте, что мы работает во view space). Делается это просто чтением нормали из текстуры и восстановлением положения по глубине:

Теперь, чтобы не городить все в теле функции main(), заведем специальную функцию, которая рассчитывает затенение в данной точке. Я пафосно назвал её performRaytracingInViewSpace:

Ну, и собственно, чтобы не томить, остаток шейдера:

В результате у нас будет затенение данной точки. Если нужно освещение, мы просто вычитаем затенение из единицы:

То есть здесь мы просто подсовываем в эту функцию начальные параметры для текущей точки и некую псевдослучайную величину, которую мы потом обновляем (читаем из текстуры шума по новым координатам).

Таким образом, весь секрет у нас в функции расчета затенения. Давайте рассмотрим её поближе.

Здесь нам нужно сгенерировать случайное направление на полусфере, заданой нормалью в точке. Я это делаю очень просто: нормализую значение из текстуры шума, и если оно лежит в другой полуплоскости от нужной нам нормали, то умножаю на –1. Выглядит это вот так:

Так как нам нужна вся полусфера, и у нас нет какого-то предпочитаемого направления, то эта функция очень даже подходит. Если нужно делать выборки в некоем конусе — в движке есть функция для этого (могу показать, если сами не найдете).

Теперь у нас есть случайное направление, по которому мы будем делать выборку. Мы сдвигаем точку в этом направлении на случайную величину между MIN_SAMPLE_SIZE и SAMPLE_SIZE и проецируем её в screen space. После чего получаем некие новые текстурные координаты и глубину в интервале [0..1].

Далее, мы смотрим, какая глубина у нас находится по новым текстурным координатам, делаем новую выборку из текстуры глубины. Затем проверяем: если новая глубина оказалась больше, чем та, которую мы получили после проецирования, значит новая точка лежит дальше нашей и перекрывать её не может, перекрытия нет — возвращаем ноль из функции:

А дальше, когда мы определили, что новая точка лежит ближе к камере, чем наша спроецированная, начинается магия затенения. Что у нас есть на входе:
— глубина нашей спроецированной точки (которая гарантировано больше, чем новая глубина);
— глубина, которую мы получили после выборки (которая гарантирована меньше, чем глубина спроецированной точки).

Что нам нужно вычислить:
— насколько сильно объект (на точку которого мы наткнулись) перекрывает нашу исходную точку.

Что нам нужно учесть:
— чем ближе новая точка к спроецированной, тем сильнее перекрытие;
— если новая точка сильно «далеко» от спроецированной, тем меньше перекрытие.

Итого: нам надо сравнить две нелинейных глубины, которые, скорее всего, близки к единице. Можно еще раз восстановить линейную глубину, а можно сделать небольшой хак и получить значение, которое характеризует глубину. После некоторых экспериментов, я пришел к выводу, что функция вида
лучше всего подходит для получения такой оценки.

Итого, у нас есть два значения оценки глубины, возьмем между ними разницу, которая будет характеризовать расстояние одной точки от другой:

Так как мы хотим контролировать степень затенения, можем ввести некий коэффециент для этой разности. В финальном варианте получается так:

Для тестовой модели я использовал значение DEPTH_DIFFERENCE_SCALE равным 3.33333. Все зависит от масштабов того, что мы рисуем и на чём хотим вычислять затенение.

Теперь у нас есть расстояние между точками, давайте вычислим степень затенения. Опять таки, после многочисленных экспериментов, я пришел к выводу, что лучше всего описывает затенение функция вида:

Чтобы сделать его более мягким и приятным, еще можно учитывать расстояние, на которое мы делали выборку (приведенное к промежутку [0..1]). Итоговая формула выглядит вот так:

Вот как влияет масштаб расстояний (тот, который DEPTH_DIFFERENCE_SCALE)

При уменьшении расстояние (при DEPTH_DIFFERENCE_SCALE 17 января 2015 (Обновление: 13 мар. 2015)

Настройки в играх: с чувством, с толком, с расстановкой

В связи с многократными вопросами и спорами, связанными с FPS в тестах для видеокарт, представленными на нашем сайте, мы решили более детально остановиться на этом вопросе и рассказать вам про настройки игр.

Все знают, что в современных играх достаточно настроек графики для улучшения качества картинки или повышения производительности в самой игре. Рассмотрим основные настройки, которые присутствуют практически во всех играх.

Разрешение экрана

Пожалуй, этот параметр является одним из главных, влияющих как на качество картинки, так и на производительность игры. Данный параметр зависит исключительно от матрицы ноутбука, и поддержки данного разрешения игрой (от 640х480 до 1920х1080). Тут все просто и пропорционально, чем больше разрешение, тем четче картинка и больше нагрузка на систему, и, соответственно, наоборот.

Качество графики

Практически в каждой игре есть свои стандартные настройки графики, которые вы можете использовать. Обычно это «низкие»», «средние», «высокие» и в некоторых играх присутствует графа «ультра». В эти установки уже изначально заложен набор настроек (качество текстур, сглаживание, анизотропная фильтрация, тени… и многие другие) и пользователь может выбрать профиль, который лучше всего подходит под его конфигурацию ПК. Думаю тут все понятно, чем лучше настройка графики, тем реалистичнее смотрится игра, и, конечно же, возрастают требования к устройству. Ниже вы можете посмотреть видео, и сравнить качество картинки во всех профилях.

Качество текстур

Данная настройка отвечает за разрешение текстур в игре. Чем выше разрешение текстур, тем более четкую и детализированную картинку вы видите, соответственно и нагрузка на GPU будет больше.

Качество теней

Эта настройка регулирует детализацию теней. В некоторых играх тени можно вообще отключить, что даст существенный прирост производительности, но картинка не будет такой насыщенной. На высоких настройках тени будут более реалистичные и мягкие.

Качество эффектов

Данный параметр влияет на качество и интенсивность эффектов, таких как дым, взрывы, выстрелы, пыль и многие другие. В разных играх данная настройка влияет по-разному, в некоторых разницу между низкими и высокими настройками очень тяжело заметить, а в некоторых отличия очевидны. Влияние данного параметра на производительность зависит от оптимизации эффектов в игре.

Читать еще:  Не запускается пуск Windows 10 что делать

Качество окружающей среды

Параметр, отвечающий за геометрическую сложность каркасов в объектах окружающего игрового мира, а также их детализацию (особенно заметна разница на дальних объектах). На низких настройках возможны потери детализации объектов (домов, деревьев, машин и т.д.). Удаленные объекты становятся практически плоским, округлые формы получаются не совсем круглыми, при этом практически каждый объект лишается каких-то мелких деталей.

Покрытие ландшафта

В некоторых играх указывается как «Плотность травы» либо носит другие подобные названия. Отвечает за количество травы, кустов, веток, камней и прочего мусора находящегося на земле. Соответственно чем выше параметр, тем более насыщенной разными объектами выглядит земля.

Анизотропная фильтрация

Когда текстура отображается не в своем исходном размере, в нее вставляются дополнительные или убираются лишние пиксели. Для этого и применяется фильтрация. Существует три вида фильтраций: билинейная, трилинейная и анизотропная. Самой простой и наименее требовательной является билинейная фильтрация, но и результат от нее наихудший. Трилинейная фильтрация тоже не даст вам хороших результатов, хоть она и добавляет четкости, но также генерирует артефакты.

Самой лучшей фильтрацией является анизотропная, которая заметно устраняет искажения на текстурах сильно наклоненных относительно камеры. Для современных видеокарт, данный параметр практически не влияет на производительность, но существенно улучшает четкость и естественный вид текстуры.

Сглаживание

Принцип работы сглаживания таков: до вывода картинки на экран она рассчитывается не в родном разрешение, а в двукратном увеличении. Во время вывода картинка уменьшается до нужных размеров, причем неровности по краям объекта становятся менее заметными. Чем больше исходное изображение и коэффициент сглаживания (x2, x4, x8, x16), тем меньше неровностей будет заметно на объектах. Собственно само сглаживание нужно для того чтобы максимально избавится от «лестничного эффекта» (зубцов по краям текстуры).

Существуют разные виды сглаживания, чаще всего в играх встречаются FSAA и MSAA. Полноэкранное сглаживание (FSAA) используется для устранения «зубцов» на полноэкранных изображениях. Минус данного сглаживания заключается в обработке всей картинки целиком, что конечно значительно улучшает качество изображения, но требует большой вычислительной мощности графического процессора.

Multisample anti-aliasing (MSAA), в отличие от FSAA, сглаживает только края объектов, что приводит к небольшому ухудшению графики, но при этом экономит огромную часть вычислительной мощи. Так что если вы не обладаете топовой игровой видеокартой, лучше всего использовать MSAA.

SSAO (Screen Space Ambient Occlusion)

В переводе на русский означает «преграждение окружающего света в экранном пространстве». Является имитацией глобального освещения. Увеличивает реалистичность картинки, создавая более «живое» освещение. Дает нагрузку только на GPU. Данная опция значительно уменьшает количество FPS на слабых графических адаптерах.

Размытие в движение

Также известно как Motion Blur. Это эффект, смазывающий изображение при быстром передвижении камеры. Придает сцене больше динамики и скорости (часто используется в гонках). Увеличивает нагрузку на GPU, тем самым уменьшает количество FPS.

Глубина резкости (Depth of field)

Эффект для создания иллюзии присутствия за счет размытия объектов в зависимости от их положения относительно фокуса. Например, разговаривая с определенным персонажем в игре, вы видите его четко, а задний фон размыто. Такой же эффект можно наблюдать если сконцентрировать взгляд на предмете расположенном вблизи, более дальние объекты будут размыты.

Вертикальная синхронизация (V-Sync)

Синхронизирует частоту кадров в игре с частотой вертикальной развертки монитора. При включенной V-Sync, максимальное количество FPS равно частоте обновления монитора. Если же количество кадров в игре у вас ниже, чем частота развертки монитора, стоит включить тройную буферизацию, при которой кадры подготавливаются заранее, и хранятся в трех раздельных буферах. Преимущество вертикальной синхронизации состоит в том, что она позволяет избавиться от нежелательных рывков, при резких скачках FPS.

Не обошлось и без недостатков, например в новых требовательных играх возможно сильное падение производительности. Также в динамических шутерах или онлайн играх, V-Sync может только навредить.

Заключение

Выше изложены основные, но далеко не все настройки в играх. Стоит напомнить, что каждая игра имеет свой уровень оптимизации, и свой ряд настроек. В некоторых случаях игры с лучшей графикой будут идти на вашем ноутбуке быстрее, чем неоптимизированные игры с более низкими требованиями. Большинство игр позволяет использовать как уже готовые настройки, так и задавать вручную каждый отдельно взятый параметр. Часть из рассмотренных выше эффектов поддерживается только в новых DirectX 11 играх, а в более старых с поддержкой DirectX 9 их просто нет.

Желаем вам приятного времяпровождения и незабываемых ощущений в играх.

Сглаживание в играх и другие настройки, как выжать максимум из видеокарты?

Здравствуйте, уважаемые читатели блога Pc-information-guide.ru. Поскольку среди моих читателей наверняка есть те, кто играет в компьютерные игры, я решил посвятить сегодняшнюю статью игровым настройкам, а конкретно сглаживанию и другим важным параметрам, в той или иной степени оказывающим влияние на производительность видеокарты. Поэтому сегодня мы с вами будем разбираться, как и какие настройки влияют на производительность видеокарты.

Во-первых важно понимать, как и из чего формируется изображение на экране, которое мы видим во время игры. Видеокарте нужно расставить объекты, натянуть текстуры, рассчитать освещение, положить тени, сгладить неровности, и при всем при этом, уложиться буквально в считанные доли секунды! И если какой-то этап занимает больше времени чем положено, появляется заметное глазу «торможение», или по-научному, проседание кадров в секунду. Вот, посмотрите сами:

Конечно, многое зависит от разрешения (Resolution) как такового. Простым изменением разрешения на одну ступень ниже можно добиться прироста производительности в 30-40%. Однако при этом, независимо от остальных настроек, картинка на экране будет выглядеть «замыленной». Поэтому самую «вкусную» картинку в игре можно получить, если разрешение соответствует максимальному разрешению (стандартному заводскому) монитора.

Качество и разрешение текстур (см. изображение выше) не так сильно влияют на производительность видеокарты, не так сильно, как качество объектов — потому что, чем больше деталей и объектов одновременно видеокарте нужно удерживать на экране, тем сложнее просчеты самих объектов и теней, которые они отбрасывают. Тени, в свою очередь, нагружают видеокарту весьма ощутимо, потому что объекты как правило движутся, меняется угол обзора, источник освещения, и чтобы тени выглядели мягко и реалистично, видеокарте нужно просчитывать много раз и усреднять итоговые значения.

Есть такая штука, как Ambient Occlusion (глобальное освещение), см. фото выше. Это технология, которая просчитывает как объекты отражают свет, который на них падает, и как близко расположены объекты, затеняя друг друга.

Это создает гораздо более реалистичную картинку с необходимыми затенениями в углах, но ОЧЕНЬ нагружает видеокарту. На сегодняшний день эта технология доступна в двух вариантах: чуть более простой SSAO (Screen Space Ambient Occlusion) и гораздо более продвинутый и прожорливый HBAO (Horizon-Based Ambient Occlusion).

Есть еще Анизотропная фильтрация (anisotropic filtering, AF) или фильтрация текстур. Она нужна для того, чтобы текстуры, которые находятся под углом или далеко от камеры не выглядели слишком мутными и на них не было никаких цветовых артефактов.

Чем выше значение — тем лучше результат фильтрации, однако сразу скажу — эти значения можно выкручивать сразу на «16x», т.е. на максимальное, и это никак не отразится на производительности даже самой бюджетной видеокарты.

Про сглаживание в играх

Сглаживание (anti aliasing). Что же такое сглаживание? Вы наверняка в играх довольно часто встречались с тем, что у объектов, которые должны в принципе выглядеть ровно и гладко, на краях появляются какие-то непонятные лесенки и зазубрины. Естественно, разработчики игр и видеокарт об этой проблеме знают, поэтому и появилась технология, которая называется «сглаживание», она и нужна чтобы эти неровности сгладить (что очевидно).

Существует довольно много методов осуществить сглаживание. Первый из них взаимодействует с изображением еще на уровне его построения. К первому методу относится: способ сглаживания SSAA (Supersample anti-aliasing) и MSAA (Multisample anti-aliasing), и еще между ними недавно затесался CSAA (Coverage Sampling Antialiasing) — последний, нечто среднее по производительности и по качеству.

Как все эти способы сглаживания работают? Они создают картинку в несколько раз большую, чем необходимо, а потом сжимают ее до размеров экрана, получается довольно неплохой результат, но нагрузка на видеокарту в этот момент просто нечеловеческая. Потому что в зависимости от того, что вы выберете в настройках игры (2x, 4x или 8x), соответственно и изображение будет в два, четыре или в восемь раз больше необходимого, получается, что и нагрузка в два, четыре или восемь раз больше.

Но, к счастью для нас, есть второй метод, который основан на так называемой пост-обработке, т.е. когда сглаживание применяется уже к сформированной сцене. К этому методу относятся уже 3 способа сглаживания: FXAA (Fast approXimate Anti-Aliasing) — по качеству сравним с четырех кратным MSAA сглаживанием, но при этом он не создает вообще никакой нагрузки на видеокарту, ну или настолько малую, что ее практически незаметно. Правда у FXAA есть один небольшой минус — при этом совсем слегка замыливаются текстуры. На глаз это почти незаметно.

Читать еще:  Startup repair Windows 7 что делать

Но если вам это мыло прям режет глаза, для вас есть второй способ SMAA (Sub-pixel Morphological Anti-Aliasing), он дает чуть меньшее размытие, но и настолько же меньшее качество сглаживания, при том, что все так же не нагружает видеокарту. И наконец третий способ — TXAA (Temporal anti-aliasing, если я правильно понял, доступно только на видеокартах от Nvidia), он дает очень плавную, киношную картинку, но при этом ощутимо нагружает видеокарту. Если сравнить его с эталонным MSAA, то двукратный TXAA = восьмикратному MSAA, при этом нагрузка на видеокарту такая же, как при двукратном MSAA.

Ну а на этом здесь все, про остальные настройки графики в играх поговорим как-нибудь в другой раз. Я надеюсь, что эта статья поможет вам выбрать подходящие настройки в любой игре и выжать максимум производительности из вашей видеокарты.

SSAO в играх что это

SSAO (англ. screen space ambient occlusion — преграждение окружающего света в экранном пространстве) — программная техника (методика) в трёхмерной компьютерной графике, которая является приближенной имитацией глобального освещения и представляет собой изменённый и усовершенствованный вариант методики Ambient occlusion. Алгоритм SSAO работает в режиме реального времени и имитирует рассеянное непрямое освещение и соответствующее затемнение в трёхмерном виртуальном пространстве.

SSAO был разработан отделом исследований и разработок немецкой компании Crytek при разработке графических компонентов игрового движка CryEngine 2. [1] Crysis, первая игра на CryEngine 2, разработанная Crytek и вышедшая осенью 2007 года, впервые использовала SSAO. Позже данный алгоритм и его модификации были использованы во многих игровых движках, включая Leadwerks Engine, Dagor Engine, Unreal Engine, Unity, X-Ray, Glacier 2 и других.

Содержание

Описание работы

Алгоритм SSAO исполняется на графическом процессоре видеокарты и осуществляется как пиксельный шейдер, анализирующий буфер глубины (Z-буфер) сцены, который сохранён в текстуре.

При работе алгоритма Ambient occlusion пиксельный шейдер производит выборку значения глубины для каждого пикселя на экране вокруг текущего пикселя и пытается вычислить количество преград от каждой из выбранных точек. В своей самой простой реализации коэффициент преграды зависит только от различия глубины выбранной точки и текущей точки. Без дополнительных продвинутых решений и алгоритмов такой метод решения «в лоб» потребовал бы приблизительно 200 чтений из текстуры для каждого пикселя для хорошего визуального качества. Это число не является приемлемым для рендеринга в режиме реального времени на современных графических процессорах.

Алгоритм SSAO призван упростить вычислительную сложность алгоритма Ambient occlusion и сделать его подходящим для работы на графических процессорах в режиме реального времени. Вместе с тем качество результирующего изображения у SSAO является худшим, чем в первоначальном Ambient occlusion, так как SSAO использует аппроксимирующие (приближающие) методики рендеринга.

Для создания Screen Space Ambient Occlusion необходимо иметь две текстуры со сценой:

  • Normal Map: положение нормали объектов сцены в каждой точке (пикселе), отображаемой на экране.
  • Position Map: координаты объекта в каждой точке (пикселе), отображаемой на экране.

Потом берётся Position Map и Normal Map каждого текселя на экране и обрабатываются соседние тексели. По отношению позиций соседних текселей к обрабатываемому, ему присваивается определённый уровень «затенения».

Для получения высококачественных результатов с гораздо меньшим количеством чтений текстуры, по сравнению с Ambient occlusion, в SSAO осуществление выборки используется вместе с случайно вращаемым ядром. Ориентация ядра повторяется каждые N пикселей экрана для того, чтобы иметь только высокочастотные искажения в финальном изображении. В конце это высокочастотное искажение удаляется NxN количеством прохода постпроцессора, размывающего изображение (англ. Blur ). При этом принимается во внимание глубина неоднородностей, используя такие методы, как сравнение смежных нормалей и глубин. Такое решение позволяет сокращать количество выборок глубины на пиксель к приблизительно 16 или меньше, в то же время предоставляя высококачественный результат и позволяя использовать SSAO в приложениях реального времени, таких как компьютерные игры.

Преимущества и недостатки

По сравнению с другими алгоритмами модели Ambient occlusion, у SSAO есть следующие преимущества:

  • Независимость от сложности сцены.
  • Нет необходимости в предварительной обработке данных (пре-процессинг).
  • Нет времени загрузки.
  • Не используется системная (оперативная) память.
  • Возможность работы с динамическими сценами.
  • Работает тем же самым непротиворечивым способом для каждого пикселя на экране, как и алгоритм Ambient occlusion.
  • SSAO выполняется полностью на графическом процессоре, не используя центральный процессор.
  • Может быть легко интегрирован в любой современный графический конвейер.

Вместе с преимуществами алгоритму SSAO свойственны и недостатки:

  • Алгоритм SSAO менее качественный, так как использует упрощающие методики для увеличения производительности.
  • Алгоритм больше локальный, чем глобальный, во многих случаях зависящий от обзора, поскольку он зависит от смежных глубин текселей, которые могут быть сгенерированы любой геометрией.
  • Алгоритму SSAO тяжело корректно сгладить/размыть искажения, не сталкиваясь с неоднородностью глубины, которая возникает, например, на гранях объектов.

SSAO в играх что это

Screen Space Ambient Occlusion (сокращённо SSAO; англ. преграждение окружающего света в экранном пространстве ) — программная техника (методика) в трёхмерной компьютерной графике, которая является приближенной имитацией глобального освещения и представляет собой изменённый и усовершенствованный вариант методики Ambient occlusion. Алгоритм SSAO работает в режиме реального времени и имитирует рассеянное непрямое освещение и соответствующее затенение в трёхмерном виртуальном пространстве. Впервые использован в игровом движке CryEngine 2 разработки Crytek. Также был использован в игровых движках Leadwerks Engine, Dagor Engine, UDK, а так же Unity3D и других.

Алгоритм SSAO исполняется на графическом процессоре (англ. GPU ) видеокарты и осуществляется как пиксельный шейдер, анализирующий буфер глубины (Z-буфер) сцены, который сохранён в текстуре.

При работе алгоритма Ambient occlusion пиксельный шейдер производит выборку значения глубины для каждого пикселя на экране вокруг текущего пикселя и пытается вычислить количество преград от каждой из выбранных точек. В своей самой простой реализации коэффициент преграды зависит только от различия глубины выбранной точки и текущей точки. Без дополнительных продвинутых решений и алгоритмов такой метод решения «в лоб» потребовал бы приблизительно 200 чтений из текстуры для каждого пикселя для хорошего визуального качества. Это число не является приемлемым для рендеринга в режиме реального времени на современных графических процессорах.

Алгоритм SSAO призван упростить вычислительную сложность алгоритма Ambient occlusion и сделать его подходящим для работы на графических процессорах в режиме реального времени. Вместе с тем качество результирующего изображения у SSAO является худшим, чем в первоначальном Ambient occlusion, так как SSAO использует аппроксимирующие (приближающие) методики рендеринга.

Для создания Screen Space Ambient Occlusion необходимо иметь две текстуры со сценой:

  • Normal Map: положение нормали объектов сцены в каждой точке (пикселе), отображаемой на экране.
  • Position Map: координаты объекта в каждой точке (пикселе), отображаемой на экране.

Потом берётся Position Map и Normal Map каждого текселя на экране и обрабатываются соседние тексели. По отношению позиций соседних текселей к обрабатываемому, ему присваивается определённый уровень «затенения».

Для получения высококачественных результатов с гораздо меньшим количеством чтений текстуры, по сравнению с Ambient occlusion, в SSAO осуществление выборки используется вместе с случайно вращаемым ядром. Ориентация ядра повторяется каждые N пикселей экрана для того, чтобы иметь только высокочастотные искажения в финальном изображении. В конце это высокочастотное искажение удаляется NxN количеством прохода постпроцессора, размывающего изображение (англ. Blur ). При этом принимается во внимание глубина неоднородностей, используя такие методы, как сравнение смежных нормалей и глубин. Такое решение позволяет сокращать количество выборок глубины на пиксель к приблизительно 16 или меньше, в то же время предоставляя высококачественный результат и позволяя использовать SSAO в приложениях реального времени, таких как компьютерные игры.

По сравнению с другими алгоритмами модели Ambient occlusion, у SSAO есть следующие преимущества:

  • Независимость от сложности сцены.
  • Нет необходимости в предварительной обработке данных (пре-процессинг).
  • Нет времени загрузки.
  • Не используется системная (оперативная) память.
  • Возможность работы с динамическими сценами.
  • Работает тем же самым непротиворечивым способом для каждого пикселя на экране, как и стандартный алгоритм Ambient occlusion.
  • SSAO выполняется полностью на графическом процессоре, не используя центральный процессор.
  • Может быть легко интегрирован в любой современный графический конвейер.

Вместе с преимуществами алгоритму SSAO свойственны и недостатки:

  • Алгоритм SSAO менее качественный, так как использует упрощающие методики для оптимизации производительности.
  • Алгоритм больше локальный, чем глобальный, во многих случаях зависящий от обзора, поскольку он зависит от смежных глубин текселей, которые могут быть сгенерированы любой геометрией.
  • Алгоритму SSAO тяжело корректно сгладить/размыть искажения, не сталкиваясь с неоднородностью глубины, которая возникает, например, на гранях объектов.
Ссылка на основную публикацию
Adblock
detector