Vrm temperature что это

Vrm temperature что это

Что такое фазы питания VRM материнской платы?

На страницах, посвященных продуктам материнских плат и пользователям онлайн-форумов, часто упоминается VRM материнской платы и количество фаз питания. Будучи технической темой, VRM — не простая тема для обсуждения. Итак, сегодня рассмотрим концепцию VRM и фразы питания как можно проще и понятнее, чтобы можно было легко понять, о чем рассказывает страница продукта материнской платы (и когда это важно).

VRM: важный в роли, но часто забытый

На каждой материнской плате есть цепь рядом с CPU, называемая модулем регулятора напряжения или VRM. Задача VRM состоит в том, чтобы сделать питание от блока питания пригодным для использования процессором и помочь, стабилизировать его. Если бы не VRM, ваш процессор даже не работал бы!

ОЗУ также имеет гораздо меньший, более простой VRM рядом со слотами оперативной памяти. Тем не менее, обычно фокусируется только на VRM процессора. Тяжёлый разгон ОЗУ выполняется немногими, и ОЗУ потребляет меньше энергии, чем ЦП, поэтому его часто игнорируют.

Технический материал: силовые фазы

VRM состоит из отдельных силовых «фаз». Ваша базовая фаза питания состоит из двух транзисторов, дросселя и конденсатора. Транзисторы могут быть или не быть покрыты радиатором, так как они могут сильно нагреваться и быть более чувствительными к температуре. Дроссели на современных материнских платах обычно выглядят как маленькие черные или серые кубики, которые иногда имеют небольшой участок разного цвета посередине. Конденсаторы — другой компонент, обычно маленькие цилиндры в форме, рядом с дросселями.

В VRM есть две отдельные группы фаз питания. Один используется для ядер ЦП, а другой используется другими частями ЦП, например, встроенным графическим процессором. На типичной материнской плате фазы питания, используемые для ядер ЦП (те, которые нас интересуют больше всего), находятся слева от ЦП, в то время как другие находятся над ним, но это не всегда так, особенно для небольших материнских плат.

По мере увеличения количества фаз питания время, в течение которого данная фаза питания «работает», уменьшается. Например, если у вас есть две фазы питания, каждая фаза работает 50% времени. Добавьте третью, и каждая фаза работает только 33% времени, и так далее.

4-фазная система

Если предположить, что используются одни и те же компоненты, то чем больше фаз вы добавите, тем круче будет работать каждая фаза, тем больше мощности сможет выдать VRM и тем стабильнее будет напряжение на процессоре. Чем больше энергии использует ваш процессор, тем горячее работает VRM. Работа кулера увеличивает срок службы VRM и снижает риск перегрева, что может стать проблемой для оверклокеров. Более высокая выходная мощность снижает риск перегрузки VRM, что может привести к выключению системы или замедлению работы процессора. Лучшая стабильность питания ЦП может в ограниченной степени снизить необходимое напряжение для стабильности разгона, повышения температуры ЦП и теоретического срока службы.

Качество фазы

Важно понимать, что большее количество фаз питания не обязательно означает лучший VRM. Фактический выбор компонентов во всем VRM имеет большое значение для рабочих температур и того, какую мощность способен выдержать VRM. Преимущество большего количества фаз заключается в стабильности напряжения, которое выдает VRM, в то время как температура и способность выходной мощности VRM находятся в воздухе.

Четыре фазы вполне могут быть лучшим выбором, чем восемь фаз, если компоненты достаточно лучше. С практической точки зрения, больше этапов, лучший выбор, но это не всегда так, поэтому лучше рассмотреть это в каждом конкретном случае.

Обманчивый маркетинг и дизайн

Довольно распространенная конструкция, используемая производителями материнских плат, заключается в удвоении количества компонентов, используемых в каждой фазе питания, без удвоения количества фаз питания. Те, кто не знает лучше, могут предположить, что вы можете подсчитать количество дросселей для подсчета количества фаз питания. Что возможно и более важно, производители материнских плат часто (но не всегда) используют эту конструкцию, одновременно требуя более высокого числа фаз. Хотя количество фаз питания не увеличивается, фактическое качество фаз все еще увеличивается, что значительно повышает выходную мощность VRM, а также рабочие температуры.

Эта практика вводит в заблуждение и не идеальна по сравнению с более актуальными фазами, но она все же помогает. ASUS Z390 Maximus XI Hero и MSI B450M Mortar (Titanium) считаются примерами такого дизайна, хотя и не являются обманчивым маркетингом. Тем не менее, Asrock Fatal1ty AB350 Gaming-ITX/ac, безусловно, считается примером притязательного подсчета количества фаз с использованием этой конструкции.

Производители материнских плат иногда выходят за рамки маркетинга двухкомпонентных фаз как дополнительные фазы, даже не удваивая все компоненты, но при этом требуют большего числа фаз. Они могут добавить еще один дроссель и, возможно, один транзистор (хотя и более важный, который обрабатывает большую часть мощности), чтобы создать видимость большего количества фаз, но не добавлять отдельные фазы. Это делает любую ложь о подсчете фаз еще более вопиющей и (в ограниченной, но не большой степени) уменьшает реальную выгоду. Gigabyte B450 Aorus M и Aorus Elite, Biostar B450MHC и ASUS TUF Z370-Pro Gaming являются примерами этого дизайна, хотя у них нет претензий по количеству фаз, связанных с ними.

Обе эти тактики учитывались, поэтому лучше не предполагать подсчет фазы питания, основанный на количестве дросселей, которые вы видите на материнской плате, и полностью игнорировать заявки на подсчет фаз от производителей материнских плат. Единственный способ по-настоящему узнать счетчик фаз — это проанализировать фактические компоненты (или, что более доступно, через поиск в Интернете знающего создателя видео или автора, который провел такой анализ на доске или досках, которые вы рассматриваете).

В конечном счете, в системах с процессорами последнего поколения беспокойство о VRM будет в основном актуально для тех, кто хочет достичь высоких разгонов, а не для обычных пользователей. До тех пор, пока производитель не укажет определенный процессор TDP как не поддерживаемый, вы можете использовать любой современный процессор на материнской плате с совместимым сокетом и запускать его без разгона и без проблем.

Основанное на доступных в настоящее время материнских платах, маловероятно, что вы столкнетесь с какими-либо существенными неудачами с любой приличной (фактической) четырехфазной материнской платой и четырехъядерным или шестиядерным процессором, а также с шестифазной материнской платой и восьмиъядерной центральный процессор (по крайней мере, до тех пор, пока его охлаждение не будет ужасным, как на ASRock Z390 Pro4). И если вы не пытаетесь побить рекорды разгона или используете процессор с 16+ ядрами, практические преимущества для виртуальных виртуальных машин высшего класса, которые могут иметь более восьми высококачественных фаз питания, невелики. Температура всегда может быть проблемой, но фактические температуры всегда будут варьироваться между пользователями и их оборудованием, в то время как какое-либо влияние на срок службы материнской платы неясно.

Все это говорит о том, что для большинства людей не стоит беспокоиться о VRM. Для нас, обычных пользователей, лучше сосредоточиться в основном на функциях и, возможно, эстетике, которую обеспечивает материнская плата. Но, зная это, вы можете сделать свой выбор более эффективно для ваших нужд.

Снижаем температуру на цепи питания AMD Radeon R9 290. Или еще одна самоделка (один из вариантов)

Вступление
Радиатор (бывший Thermalright VRM-R3)

На ПС есть моя статья: Termalrigh VRM-R3 под Arctic Cooling Accelero Xtreme 2900 Retail (для HD 5850) Собственно из названия можно понять что и для чего подгонялось изначально. И проследить его историю по другим моим записям. С тех пор и на данный момент,

В нынешних реалиях он выглядит так:

Отломанная тепловая трубка была припаяна, поэтому чтобы её удалить, освободив место, надо было прогреть радиатор. Прогрев был осуществлен с помощью кухонной электроплиты. На нагретый «блин» был положен радиатор. Удерживая пассатижами во время прогрева, отверткой проверялась ТТ на подвижность. Как движение началось она была извлечена из места «базирования».
Следующий шаг сделать отверстие, соответствующее меж центровому расстоянию в зоне цепи питания на печатной плате AMD Radeon R9 290/R9 290X. Оно равно 87 мм, а на радиаторе было 84 мм. Не удивительно сей продукт предназначался для видеокарт Radeon HD 58505870. И после внесения не больших корректировок, устанавливался и использовался на Radeon HD 69506970
Фото до изготовления отверстия:

Взяв штангенциркуль, выставив его на 87 мм, им на изделии отметил заданное расстояние, с помощью молотка и кернера, пометил место для сверления будущего отверстия. Было взято 1,5 мм сверло и на малых оборотах высверливалось намеченное место. После было использовано другое, 2,8 мм сверло и проделана очередная операция, в уже имеющемся отверстии. С помощью метчика (для винтов М3) была произведена нарезка под комплектные винты от VRM-R3. Но вот не задача. На винтах накатка сделана с другим шагом, отличающийся от имеющегося у меня метчика. Да и проблема алюминия сыграла свою роль. В итоге чтобы закрепить изделие, был использован стандартный винт для крепежа комплектующих в системных корпусах.

Результат после подгонки:

Радиатор на DDR-DDR2 Thermaltake V1R (CL-R0028) Cool Ready!

Данный девайс был приобретен не случайно, хотя он предназначен для охлаждения модулей памяти. Ослабив оковы в виде двух прижимных пластин, тепловая трубка на которой установлен радиатор, извлечен. В высвобожденное место в радиаторе (бывшем VRM-R3) тепловая трубка с не большим приложением усилия, без проблем входила и выходила. Теперь приступим к следующему этапу.

Установка на видеокарту:

Естественно окончательный монтаж производился после всех примерок и подгонок бывшего Thermalright VRM-R3. Перед окончательной и заключительной стадией установки, выяснялось какую по толщине нужно использовать т-прокладку. Расстояние(зазор) между поверхностями радиатора и крышкой транзисторов, установленные на фазы питания, равно 0,5 мм. Комплектная от VRM-R3 не подходит, так как она равна тем самым 0,5 мм, а значит полного контакта не видать, как своих ушей. Решено было использовать 1 мм термопрокладку от Full Cover EK. Как раз от какого-то оставалось. Все комплектующие приготовлены, для заключительного этапа. Приступаем к монтажу.
Одно из двух отверстий осталось как оно есть, без изменений, поэтому в него был наживлен комплектный винт, накинув на него предварительно шайбу ПВХ. Во второе, сделанное отверстие, которое было просверлено по соответствию меж центрового расстояния (87 мм) печатной платы в зоне цепи питания R9 290. Как уже говорил, был использован стандартный монтажный винт.

Читать еще:  Тип метки NFC не поддерживается что делать

Фото с установленным радиатором на PCB Radeon R9 290:

На внутренней стороне:

внешней стороне:

А вот и фото после снятия радиатора с R9 290, по завершению тестирования:

Как видно по отпечаткам контакт между поверхностями отменный.

Тестовый стенд

Тестирование производилось на открытом стенде со следующей конфигурацией:
• Материнская плата: ASUS Crosshair IV Formula, BIOS 3027
• Процессор: AMD FX-8350 (4000 @4570 МГц, 240 х 19 при 1.48 В)
• Система охлаждения процессора: Thermalright Archon rev. A
• Видеокарта: AMD Radeon Sapphire R9 290;
• Система охлаждения на видеокарте: Ice Hammer IH-900 B
• Термоинтерфейс: Arctic MX-4
• Оперативная память: Crucial Ballistix Tracer, 2 х 4096 Мбайт, PC3 — 14900, 1866 Мгц., DDR3 ,CL9-9-9-27 1,5 В(BLT2CP4G3D1869DT2TXRGCEU)
• HDD (SSD): Crucial M4 128 Гбайта (CT128M4SSD2) 2.5”, SATA, MLC;
• Блок питания: Zalman ZM1000-HP, 1000 Вт;
• Монитор: Dell U2412M, 1920 х 1200;
• Мультиконтроллер: Zalman ZM-MFC3.

На Sapphire R9 290 использовался VGA-кулер Ice Hammer IH-900B, для охлаждения графического процессора. Мною он был протестирован на HD 6950/6970, в начале 2012 года. Кому интересно и хочется изучить более подробно, то вашему внимание: Холодный молот наносит ответный удар

Тестирование производилось с использованием бывшего радиатора Thermalright VRM-R3, как в гордом одиночестве, так и с установкой в него Thermaltake V1R, нанеся предварительно на поверхность ТТ термопасту Arctic MX-2:

    На транзисторы подсистемы питания GDDR5, был закреплен с помощью термоклея «T»- образный радиатор и модифицированный VRM-R3:

Инструментарий

Применялось следующее программное обеспечение:
Мониторинг: GPU-Z 0.7.7; HWiNFO64 4.27-2050;
Прогрев GPU и VRM: FurMark 1.11.0

Использовалась операционная система Windows 7 Ultimate 64-bit (Service Pack 1) со всеми обновлениями на данный момент. Процессор был разогнан по шине 240МГц с множителем 19, его частота в итоге составила 4560 МГц.

На скриншоте значение завышено из-за особенности материнской платы. в BIOS’е функции, которые отвечают за стабильность системы, находятся в авто режиме.

    В BIOS-e материнской платы во вкладке «Extreme Tweaker» настройки были выставлены со следующими параметрами:
  • Ai Overclock – manual
  • CPU Ratio – x19
  • AMD Turbo CORE technology – Disable
  • CPU Bus Frequency – 240
  • PCIE Frequency – 100;
  • DRAM Frequency – 1920 МГц (1:4 с таймингами: 9-9-9-24)
  • CPU/NB Frequency — 2400 МГц
  • HT Link Speed — 2400 МГц;
  • CPU Offset Voltage – 1,488 [0.10000]
  • DRAM Voltage – [1.68750]
  • HT Voltage – [1.22500]
  • NB Voltage – [1.35000]

Все остальные настройки по — умолчанию (AUTO).

  • Драйвер для видеокарты: Catalyst 14.3 Beta

Тестирование и замеры производились на открытом стенде при температуре окружающей среды 24-26 градусов по Цельсию. Показание окружающей среды, снималось с показания термопары, которая была подключена к реобасу и выведена отдельно за пределы тестового стенда.
На видеокарте переключатель во время тестирования находился в положение «2» с оригинальным BIOS.
За сканирования модулей напряжение отвечает контроллер (ШИМ) «CHIL», через него температуры с силовых элементов отражаются во вкладке «sensor» GPU-Z 0.7.7 (строчки «VRM Temperature 1» и «VRM Temperature 2»).
Дублирование температур производилось с помощью «HWiNFO64».

    VRM Temperature 1 — общая температура цепи питания (транзисторов) GPU
    VRM Temperature 2 — температура подсистемы питания GDDR5

Ниже визуально показано, что за что отвечает.

Контроль и регулировка вентилятора, осуществлялась с помощью мультиконтроллера Zalman ZM-MFC3 на следующих оборотах:

Для получения результатов в эксперименте, графический процессор и силовые элементы видеокарты прогревались «Furmark»-ом в течение пяти минут, только на штатной частоте (GPU 947 Мгц, GDDR5 1250(5000)Мгц.) с нажатием «Burn-in-test»:

Перед тем как перейти к результатам тестирования, приведу расшифровку моих сокращенных обозначений в графиках.

VRM-R3 — Бывший радиатор Thermalright VRM-R3, совмещенный для установки на Radeon R9 290/290X.
VRM-R3+TTRad — тот же самый радиатор с установленным в него тепловой трубки с радиатором, Thermaltake V1R

Что такое фазы питания VRM материнской платы?

На страницах, посвященных продуктам материнских плат и пользователям онлайн-форумов, часто упоминается VRM материнской платы и количество фаз питания. Будучи технической темой, VRM — не простая тема для обсуждения. Итак, сегодня рассмотрим концепцию VRM и фразы питания как можно проще и понятнее, чтобы можно было легко понять, о чем рассказывает страница продукта материнской платы (и когда это важно).

VRM: важный в роли, но часто забытый

На каждой материнской плате есть цепь рядом с CPU, называемая модулем регулятора напряжения или VRM. Задача VRM состоит в том, чтобы сделать питание от блока питания пригодным для использования процессором и помочь, стабилизировать его. Если бы не VRM, ваш процессор даже не работал бы!

ОЗУ также имеет гораздо меньший, более простой VRM рядом со слотами оперативной памяти. Тем не менее, обычно фокусируется только на VRM процессора. Тяжёлый разгон ОЗУ выполняется немногими, и ОЗУ потребляет меньше энергии, чем ЦП, поэтому его часто игнорируют.

Технический материал: силовые фазы

VRM состоит из отдельных силовых «фаз». Ваша базовая фаза питания состоит из двух транзисторов, дросселя и конденсатора. Транзисторы могут быть или не быть покрыты радиатором, так как они могут сильно нагреваться и быть более чувствительными к температуре. Дроссели на современных материнских платах обычно выглядят как маленькие черные или серые кубики, которые иногда имеют небольшой участок разного цвета посередине. Конденсаторы — другой компонент, обычно маленькие цилиндры в форме, рядом с дросселями.

В VRM есть две отдельные группы фаз питания. Один используется для ядер ЦП, а другой используется другими частями ЦП, например, встроенным графическим процессором. На типичной материнской плате фазы питания, используемые для ядер ЦП (те, которые нас интересуют больше всего), находятся слева от ЦП, в то время как другие находятся над ним, но это не всегда так, особенно для небольших материнских плат.

По мере увеличения количества фаз питания время, в течение которого данная фаза питания «работает», уменьшается. Например, если у вас есть две фазы питания, каждая фаза работает 50% времени. Добавьте третью, и каждая фаза работает только 33% времени, и так далее.

4-фазная система

Если предположить, что используются одни и те же компоненты, то чем больше фаз вы добавите, тем круче будет работать каждая фаза, тем больше мощности сможет выдать VRM и тем стабильнее будет напряжение на процессоре. Чем больше энергии использует ваш процессор, тем горячее работает VRM. Работа кулера увеличивает срок службы VRM и снижает риск перегрева, что может стать проблемой для оверклокеров. Более высокая выходная мощность снижает риск перегрузки VRM, что может привести к выключению системы или замедлению работы процессора. Лучшая стабильность питания ЦП может в ограниченной степени снизить необходимое напряжение для стабильности разгона, повышения температуры ЦП и теоретического срока службы.

Качество фазы

Важно понимать, что большее количество фаз питания не обязательно означает лучший VRM. Фактический выбор компонентов во всем VRM имеет большое значение для рабочих температур и того, какую мощность способен выдержать VRM. Преимущество большего количества фаз заключается в стабильности напряжения, которое выдает VRM, в то время как температура и способность выходной мощности VRM находятся в воздухе.

Четыре фазы вполне могут быть лучшим выбором, чем восемь фаз, если компоненты достаточно лучше. С практической точки зрения, больше этапов, лучший выбор, но это не всегда так, поэтому лучше рассмотреть это в каждом конкретном случае.

Обманчивый маркетинг и дизайн

Довольно распространенная конструкция, используемая производителями материнских плат, заключается в удвоении количества компонентов, используемых в каждой фазе питания, без удвоения количества фаз питания. Те, кто не знает лучше, могут предположить, что вы можете подсчитать количество дросселей для подсчета количества фаз питания. Что возможно и более важно, производители материнских плат часто (но не всегда) используют эту конструкцию, одновременно требуя более высокого числа фаз. Хотя количество фаз питания не увеличивается, фактическое качество фаз все еще увеличивается, что значительно повышает выходную мощность VRM, а также рабочие температуры.

Эта практика вводит в заблуждение и не идеальна по сравнению с более актуальными фазами, но она все же помогает. ASUS Z390 Maximus XI Hero и MSI B450M Mortar (Titanium) считаются примерами такого дизайна, хотя и не являются обманчивым маркетингом. Тем не менее, Asrock Fatal1ty AB350 Gaming-ITX/ac, безусловно, считается примером притязательного подсчета количества фаз с использованием этой конструкции.

Производители материнских плат иногда выходят за рамки маркетинга двухкомпонентных фаз как дополнительные фазы, даже не удваивая все компоненты, но при этом требуют большего числа фаз. Они могут добавить еще один дроссель и, возможно, один транзистор (хотя и более важный, который обрабатывает большую часть мощности), чтобы создать видимость большего количества фаз, но не добавлять отдельные фазы. Это делает любую ложь о подсчете фаз еще более вопиющей и (в ограниченной, но не большой степени) уменьшает реальную выгоду. Gigabyte B450 Aorus M и Aorus Elite, Biostar B450MHC и ASUS TUF Z370-Pro Gaming являются примерами этого дизайна, хотя у них нет претензий по количеству фаз, связанных с ними.

Обе эти тактики учитывались, поэтому лучше не предполагать подсчет фазы питания, основанный на количестве дросселей, которые вы видите на материнской плате, и полностью игнорировать заявки на подсчет фаз от производителей материнских плат. Единственный способ по-настоящему узнать счетчик фаз — это проанализировать фактические компоненты (или, что более доступно, через поиск в Интернете знающего создателя видео или автора, который провел такой анализ на доске или досках, которые вы рассматриваете).

Читать еще:  Что означает кнопка DPI на мышке

В конечном счете, в системах с процессорами последнего поколения беспокойство о VRM будет в основном актуально для тех, кто хочет достичь высоких разгонов, а не для обычных пользователей. До тех пор, пока производитель не укажет определенный процессор TDP как не поддерживаемый, вы можете использовать любой современный процессор на материнской плате с совместимым сокетом и запускать его без разгона и без проблем.

Основанное на доступных в настоящее время материнских платах, маловероятно, что вы столкнетесь с какими-либо существенными неудачами с любой приличной (фактической) четырехфазной материнской платой и четырехъядерным или шестиядерным процессором, а также с шестифазной материнской платой и восьмиъядерной центральный процессор (по крайней мере, до тех пор, пока его охлаждение не будет ужасным, как на ASRock Z390 Pro4). И если вы не пытаетесь побить рекорды разгона или используете процессор с 16+ ядрами, практические преимущества для виртуальных виртуальных машин высшего класса, которые могут иметь более восьми высококачественных фаз питания, невелики. Температура всегда может быть проблемой, но фактические температуры всегда будут варьироваться между пользователями и их оборудованием, в то время как какое-либо влияние на срок службы материнской платы неясно.

Все это говорит о том, что для большинства людей не стоит беспокоиться о VRM. Для нас, обычных пользователей, лучше сосредоточиться в основном на функциях и, возможно, эстетике, которую обеспечивает материнская плата. Но, зная это, вы можете сделать свой выбор более эффективно для ваших нужд.

Диод PCH: что это такое и какая у него должна быть температура. Почему PCH перегревается и опасно ли это

Программы мониторинга аппаратной среды компьютера, такие, как AIDA64 и HWiNFO , показывают много интересного, но, к сожалению, не всегда понятного. И больше всего вопросов вызывает показатель «Диод PCH».

Диоды, как мы знаем из школьного курса физики, это такие радиоэлементы с односторонней проводимостью, которые используют в схемотехнике электронных устройств. Разновидностей диодов целая куча: светоизлучающие, лазерные, микроволновые, инфракрасные, германиевые, кремниевые, тиристоры, стабисторы, варикапы… Но ни в одном справочнике радиодеталей вы не найдете диода PCH. Тем не менее, он есть в вашем компьютере и выполняет очень важную функцию. Итак, разберемся, что такое диод PCH, зачем следить за его температурой и о чем говорит ее повышение.

Неусыпный «часовой» и его подопечный

Не буду томить: диод, точнее, термодиод PCH – это обобщенное название датчика температуры чипсета (системной логики) материнской платы компьютера в программах мониторинга. Его значение отражает уровень нагрева этого узла в реальном времени. Обобщенным же понятие «диод PCH» является потому, что функции температурных датчиков могут выполнять другие элементы, например, термотранзисторы, а PCH – не всегда PCH в его исконном значении: так обозначают лишь один из существующих видов чипсета, а вовсе не все.

PCH (Platform Controller Hub) – это элемент системной логики производства Intel, который управляет работой основной массы структур материнской платы. В его «епархию» входят контроллеры шин USB, SMBus, PCI-Express, LPC, SATA, периферийных устройств, RAID, часы реального времени и т. д. Словом, он управляет всем за исключением графики и памяти, которыми на современных платформах заведует центральный процессор.

Аналог PCH марки AMD называется FCH (Fusion Controller Hub), а марки nVidia – MCP (Media and Communications Processor).

На старых материнках (выпущенных до 2008 г. для процессоров Intel и до 2011 г. для AMD) системная логика разделена на 2 части – северный (MCH по классификации Intel) и южный (ICH) мосты. Первый отвечает за память и графику, второй – за периферию и остальное. После «упразднения» северных мостов южные стали называть просто хабами платформы или PCH (FCH, MCP).

На платах ноутбуков на базе Intel Core 4-го поколения и новее чипсет и вовсе отсутствует как отдельный элемент – теперь его размещают на одной подложке с процессором.

Температура PCH: какой она должна быть

Максимально допустимая температура на кристалле процессора обычно указывается в его спецификации на сайте производителя. Параметр называется TJUNCTION или T J max.

Однако в спецификациях ICH/PHC, а тем более чипсетов AMD и NVidia ничего подобного не найти. Точную информацию о температурных режимах этих узлов можно узнать лишь из их datasheet (описательных документов электронных устройств), которые не всегда есть в открытом доступе и довольно сложны для восприятия.

Согласитесь, простому пользователю читать такие вещи неинтересно, поэтому для определения температурного максимума чипсета своего компьютера принято поступать проще – ориентироваться на TJUNCTION процессора того же поколения.

Например, если TJUNCTION мобильного CPU Intel Core i5-6440HQ (микроархитектура Skylake) составляет 100°C, то и PCH Intel HM170 (тоже Skylake) выдержит температуру примерно 100°C.

А если обобщенно, то нормальный показатель температуры диода PCH ноутбуков составляет 45-70°C, стационарных ПК – 30-60°C. Кратковременные подъемы до более высоких цифр при активной нагрузке тоже являются нормой.

Нужно ли охлаждать чипсет

Исправные элементы системной логики при обычной работе и нормальном охлаждении компьютера практически никогда не нагреваются до максимума. Их тепловая мощность (TDP) в 10 и более раз ниже того же показателя у процессоров, поэтому производители материнских плат и ноутбуков даже не всегда устанавливают на них радиаторы.

Если чипсет вашего компьютера не имеет никаких элементов охлаждения, то, скорее всего, он в нем не нуждается. Но в отдельных случаях всё же стоит подумать о мерах по усилению теплоотвода от этого узла:

  • Если у вас нет возможности регулярно чистить внутренние части ПК или ноутбука от пыли либо если аппарат конструктивно имеет недостаточно эффективный теплоотвод.
  • Если хаб платформы расположен очень близко к жесткому диску. Диску, в отличие от чипсета, дополнительный нагрев может повредить.
  • Если термодатчик PCH постоянно показывает температуру выше нормы или близкую к ее верхнему порогу, и это сопровождается признаками перегрева системы – шумом кулера, тормозами и зависаниями при отсутствии значимой нагрузки на процессор и память.
  • Если чипсет находится прямо под клавиатурой ноутбука. Такое расположение опасно не столько перегревом, сколько механическим повреждением кристалла при нажатии на клавиши.

Для охлаждения чипсета десктопных материнских плат обычно достаточно радиатора и/или дополнительного корпусного вентилятора. Если теплоотводу от PCH мешает плата расширения, например, видеокарта, то последнюю придется установить в другой слот.

С ноутбуками сложнее. На них в качестве радиатора PCH можно использовать тонкую медную пластину (наборы пластин разной толщины продаются в интернет-магазинах), а если свободного места над чипом нет совсем, то теплопроводящую графитовую пленку.

На кристаллы чипов, расположенных со стороны клавиатуры, достаточно положить мягкую термопрокладку подходящей толщины – такой, чтобы она заполняла зазор между кристаллом и основанием клавиатуры, которое и будет служить чипсету радиатором.

Постоянно высокая температура PCH: что означает и чем опасна

Если показатели диода PCH постоянно или большую часть времени превышают норму либо приближаются к ее верхней границе, то имеет место одна из следующих ситуаций:

  • Компьютер недостаточно охлаждается. Это несложно распознать по типичным признакам перегрева (перечислены выше) и высоким значениям температур других узлов, в частности, процессора и накопителей.
  • Чипсет испытывает повышенную нагрузку из-за подключения и одновременного использования большого количества периферийных устройств. Для проверки этой версии достаточно отключить часть периферии и проследить, как изменятся показатели нагрева PCH.
  • Нагрузка на чипсет возросла после установки на компьютер операционной системы с более высокими требованиями. Так, владельцы относительно старых ПК и ноутбуков некоторое время назад писали на форумы, что после обновления Windows 7 до Windows 10 средняя температура диода PCH и процессора выросла на несколько градусов.
  • Термодиод PCH передает ложные значения из-за неисправности или неверной интерпретации этих данных программой мониторинга. Если есть сомнения в точности показателей, перепроверьте их в другой программе. В качестве термометра можно использовать и собственный палец, но не без риска получить ожог.
  • Периферийное устройство или порт, к которому оно подключено, неисправны. Либо неисправен сам чипсет. Это наиболее неблагоприятный вариант из всех возможных. В подобных случаях наряду с повышением температуры PCH имеют место симптомы неполадки узла, в котором возникла проблема. Например, не работает одно из гнезд USB или при подключении наушников к разъему аудио компьютер начинает резко тормозить. При значительных дефектах хаба аппарат может и вовсе не включаться, не проходить инициализацию, не выводить изображение на экран и т. д. Неисправный хаб платформы может нагреваться до значительных температур даже раньше, чем будет нажата кнопка включения компьютера – от дежурного питания, которое подается на плату при подключении к источнику энергии.

Посадочное место PCH на Boardview мобильной материнской платы

А теперь самое главное: может ли чипсет выйти из строя от одноразового перегрева или постоянной работы при повышенной температуре? Теоретически это возможно, однако на практике почти не встречается, поскольку крупные микросхемы – процессоры, графические чипы и системная логика, имеют встроенную систему термозащиты. При достижении критического порога нагрева они начинают сбрасывать тактовую частоту (thermal throttling), а если температура продолжает расти – отключаются. В случае перегрева системы первой обычно срабатывает термозащита процессора, поскольку он выделяет больше тепла.

От постоянной работы в условиях «парилки» скорее выйдут из строя элементы питания чипсета, чем он сам. Ведь в отличие от «питомца», они не имеют температурной защиты, а нагреваться могут весьма и весьма. Практически все случаи повреждения хабов и южных мостов связаны не с температурой, а с электрическими пробоями по линиям USB или других периферийных устройств и компонентов материнской платы.

Тестирование чипсета на стабильность под нагрузкой

Проверка работоспособности чипсета под нагрузкой помогает выявить скрытые неполадки системы, в том числе связанные с недостаточным охлаждением этого узла. Для ее проведения удобно использовать бесплатную утилиту OCCT . Она несложна в применении и выдает довольно точные и наглядные результаты.

Читать еще:  Priorize temperature что это

OCCT содержит несколько наборов тестов для оценки состояния всех основных узлов компьютера. Средства тестирования системной логики входят в состав «Большого набора», который также включает инструменты проверки процессора и памяти.

Ошибки в ходе выполнения большого набора указывают на нестабильное состояние какого-либо из этих устройств. Подтвердить или опровергнуть версию виновности чипсета поможет последующий запуск среднего набора тестов, который нагружает только процессор и память.

  • Завершите работающие программы и сохраните открытые документы.
  • Выберите в настройках утилиты вид теста «OCCT» и режим «Большой набор», остальные параметры оставьте по умолчанию.
  • В разделе «Расписание теста» укажите длительность проверки. Оптимальное время составляет 1 час.
  • Нажмите копку запуска и наблюдайте за состоянием системы. Графики нагрузки, температур и других показателей отображаются в главном окне утилиты.

Во время тестирования важен непрерывный визуальный контроль. При первых признаках нестабильности, например, мерцании экрана, зацикливании звука и других неестественных симптомах проверку следует остановить, а тест считать не пройденным. И напротив, тест, пройденный без ошибок, указывает на то, что главные узлы вашего компьютера, включая чипсет, в порядке и высокая нагрузка им не страшна.

Тест: влияние системы охлаждения на производительность видеокарт NVIDIA

Страница 3: Тесты

Выше мы изложили теорию, теперь осталось оценить ее на практике. Большинство из полученных результатов уже известны по оригинальному тесту Gigabyte GeForce GTX 1080 Xtreme Gaming, но здесь мы рассмотрим их под несколько иным углом.

уровень шума

Бездействие

В режиме бездействия вентиляторы Gigabyte GeForce GTX 1080 Xtreme Gaming останавливаются, но радиальный вентилятор Founders Edition продолжает работать. Сегодня почти все партнеры NVIDIA выключают вентиляторы в режиме бездействия, так что эта функция не уникальная. Разве что у разных производителей выставляются разные температуры остановки и раскрутки вентиляторов.

уровень шума

Почти все видеокарты партнеров NVIDIA работают тише Founders Edition. Видеокарта Gigabyte GeForce GTX 1080 Xtreme Gaming работала существенно тише, хотя перед нами не самая тихая модель GeForce GTX 1080. Впрочем, разница достаточно велика, чтобы стать преимуществом при выборе между видеокартами партнеров и Founders Edition.

Энергопотребление (вся система)

Бездействие

Энергопотребление (вся система)

Энергопотребление системы в режиме бездействия не так интересно, поскольку здесь сказываются другие компоненты. Под нагрузкой более высокие тактовые частоты приводят к увеличению энергопотребления. Но добавка в 20 Вт остается в разумных пределах, тем более что мы получаем увеличение производительности. Производители любят подчеркивать высокую эффективность компонентов подсистемы питания, но на практике частоты продолжают оказывать существенное влияние на энергопотребление.

Температура GPU

Бездействие

Весьма интересен анализ температур. В режиме бездействия многие видеокарты партнеров охлаждают GPU до меньших температур, чем у эталонной видеокарты, к ним относится и Gigabyte GeForce GTX 1080 Xtreme Gaming, несмотря на остановку вентиляторов.

Температура GPU

Под нагрузкой разница становится еще более существенной. Видеокарта Founders Edition подбирается к температурному пределу и включает троттлинг, но у Gigabyte GeForce GTX 1080 Xtreme Gaming мы получаем температуру меньше планки 70 °C, поэтому тактовые частоты не ограничиваются температурой. Впрочем, охлаждать GPU ниже температуры 70 °C не всегда и требуется, поскольку пороговая температура составляет 83 °C. Здесь лучше соблюдать баланс между уровнем шума и охлаждением.

Температура памяти

Перейдем к следующему измерению, которое мы не проводили в оригинальном тесте. А именно к температурам памяти и компонентов VRM. По чипам памяти разница тоже ощутима. У видеокарты GeForce GTX 1080 Founders Edition под нагрузкой они нагревались до 78 °C, но у Gigabyte GeForce GTX 1080 Xtreme Gaming температура составила 69 °C. Впрочем, даже температура 78 °C проблемой для чипов памяти не является, у некоторых других видеокарт чипы памяти нагреваются сильнее. Только уровень порядка 90 °C можно назвать критическим.

Температура VRM

У VRM температура всегда довольно высокая. У видеокарт EVGA наблюдались даже проблемы перегрева выше 100 °C, что превышает спецификации. У видеокарты GeForce GTX 1080 Founders Edition мы получили температуру VRM 98 °C, довольно близко к пределу. У Gigabyte GeForce GTX 1080 Xtreme Gaming температура была ниже — 93 °C.

Социальные сети

Страницы обзора

Ваш рейтинг

Источник и другие ссылки

Нет доступных источников

комментарии (2)

Новичок
Постов: 11

Администратор
Постов: 904

Возможно, вам будут интересны следующие статьи:

Тест и обзор: Sapphire Pulse Radeon RX 5700 XT — видеокарта.

В начале июля AMD представила видеокарты Radeon RX 5700 и Radeon RX 5700 XT, но из-за упреждающего удара конкурента в виде моделей Super, AMD пришлось сразу же снижать цены — еще до. [читать дальше]

Тест и обзор: Radeon RX 5700 и Radeon RX 5700 XT -.

С видеокартами линейки Radeon RX 5700 AMD планирует упрочить свои позиции на массовом сегменте рынка, который обеспечивает основной оборот. Мы уже рассмотрели. [читать дальше]

Тест и обзор: GeForce RTX 2060 Super и RTX 2070 Super — новые.

Игра в прятки закончилась, NVIDIA объявила новые видеокарты, призванные конкурировать с линейкой AMD Radeon RX 5700, которая официально выйдет 7 июля. А именно видеокарты. [читать дальше]

Тест и обзор: GeForce GTX 1660 Ti — Turing без RTX

NVIDIA сегодня официально представила новую видеокарту GeForce GTX 1660 Ti, слухи о которой ходили последние недели. С новой видеокартой GeForce GTX можно праздновать возвращение. [читать дальше]

Тест и обзор: PowerColor Red Devil Radeon RX 5700 XT -.

В нашу тестовую лабораторию продолжают поступать видеокарты Navi на альтернативном дизайне, теперь настала очередь протестировать Powercolor Red Devil Radeon RX 5700 XT. По. [читать дальше]

Тест и обзор: Gigabyte Radeon RX 5700 XT Gaming OC 8G — тихая и.

По сравнению с поколением Vega, альтернативные дизайны видеокарт AMD Navi выходят чуть быстрее. В нашу тестовую лабораторию поступила видеокарта Gigabyte Radeon RX 5700 XT Gaming OC 8G. [читать дальше]

Народ спасайте! Мать gigabyte aorus gaming 5 wifi. Проц RYZEN 2700x. Без разгона (только заводской автобуст). Оперативка завелась на 2933. Пару дней погонял с боксовым куллером пока ждал переходник для AM4 для водянки captain 360ex. Температура ЦП в Corona за час рендера около 80 градусов. Тогда еще на температуру мосфетов не обращал внимание, но точно за 100 не переваливала иначе забил бы тревогу. Подключив водянку, температура процессора при рендере больше 55 не поднимается, но вот мосфеты (цепь питания) не обдуваются и температура VRM MOS доползла до 120 градусов. Уверен и дальше бы ползла (кстати тротлинг процессора не включался, ничего не подвисало и вообще никаких тормозов замечено не было). Корпус у меня открытый (thermaltake p5 tg). В общем что делать. Денег до конца месяца в обрез, а рендерить надо. Пока такие мысли:

1. Вернуть боксовский кулер и работать с ним

2. Снять с боксовского кулера вертушку и приспособить для обдувания мосфетов (руки кривые, скорей всего если сниму, вернуть обратно уже не получится, там на пластиковых защелках она вроде)

3. Снять пластиковые радиаторы с материнки

4. Забить и гонять так (заодно проверю температуру включения тротлинга), а как сгорит сдать нафиг по гарантии и взять мать по холодней

5. Пойти напиться с друзьями, петь песни и приставать к женщинам

6. Ваш вариант (напоминаю, купить кулер, нормальные радиаторы на мосфеты и еще что-то возможности нет до конца месяца, а работать надо)

Akkoxe спасибо!) Компьютеру 3 дня всего. До этого с мощными системами не сталкивался и про охлаждение только после выявленной проблемы начал читать.

Мне кажется дело в корпусе. Это открытый стеклянный стенд, в котором совсем нет ветра (горячий воздух не скапливается, но и холодный не задувает) вот и радиаторам питания неоткуда принудительно охлаждаться. Попробую как-нибудь закрепить куллер

А вы когда такой корпус брали о чём думали? Как же горячий не скапливается, там тепловой мешок вокруг материнки и врм.

И зачем вода на 2700X? Бред какой-то. у вас экстремальный разгон?

Цитата BlackBack.bewery:

Снять все боковые стёкла, поставить у окна. Потом колхозить вентиляторы на врм или купить хорошиц кулер аля Noctua NH-C14S, Be Quiet Shadow Rock TF 2, Scythe Grand KamaCross 3 и т.п.

Теплый воздух срывается и уходит вверх. А холодный занимает его место. Школьная физика. По этому принципу работает отопление в доме (все батареи так работают). По этому же принципу образовываются восходящие и нисходящие воздушные потоки в атмосфере. Единственное, что эти потоки теплого воздуха не постоянны, а пузыреобразные. То есть воздух не идет равномерным потоком, а срывается с определенной амплитудой. Но это ни на что не влияет. Просто температура будет плавать на пару градусов. Другое дело, что естественной конвекции часто не хватает, для того что бы что то охладить.

«тепловой мешок», как вы говорите (нет такого термина) может образоваться только в том случае, если над местом нагрева установить какой то отсекающий контур. Крышку например. Тогда воздух не будет уходить вверх, а будет нагреваться и скапливаться под крышкой.

Еще, при обдуве чего то может образовываться так называемый «стоячий вихрь». Когда воздух в плену у окружающих его потоков. Это можно наблюдать, когда в сильный ветер за домом листья носятся по кругу, и не могут никуда вылететь. Но это критично при проектировании аэродинамических поверхностей, для теплого воздуха это не так критично, так как он все равно рано или поздно улетит, не успев прогреться до высокой температуры. В системнике этот стоячий вихрь так или иначе образовывается, когда два вентилятора работают на продув корпуса. Например за планками озу по направлению потока воздуха, если нет никакого третьего вентилятора, что дует перпендикулярно потоку.

Ссылка на основную публикацию
Adblock
detector